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(Received 28 May 2005; in final form 25 January 2006; accepted 27 February 2006 )

In this work a set of experimental data points is used to study some scaling properties of
Miesowicz coefficients. Using the fact that all the compounds studied present two critical
points—the crystal–nematic and the nematic–isotropic phase transitions—a common
temperature scale was defined. With the use of this unique temperature scale two relevant
aspects that distinguish the viscosity of these materials can be simultaneously extracted and
studied: (1) the molecular shape anisotropy and (2) the different strengths of molecular
interaction of the different compounds. Through the study of the scaling properties
associated with these properties, the existence of a common law connecting the Miesowicz
coefficients with the associated decay time is proposed.

1. Introduction

The macroscopic anisotropy exhibited by some materi-

als is among the most intriguing physical properties

of matter. As a rule, it results from symmetries at

the molecular level and constitutes a good guide to the

comprehension of the microscopic structure of the

material [1]. Particularly surprising is the fact that

liquids can also present macroscopic anisotropic beha-

viour, nematic liquid crystals (NLCs) being the simplest

of these substances [2]. In 1935, Miesowicz discovered

that under the presence of an external magnetic field

even their viscosity can become anisotropic [3]. Since

then, an enormous amount of work has been devoted to

the study of this property and research in this area

remains active [4–18].

It is common to study the viscosity of these materials

by considering the contribution of the alignment order

through the explicit use of the order parameters S2 and

S4 [2]. The kinetic approach of Doi and co-workers [9–

12], and the conformational transformation of Hess and

co-workers [14–17], are the most important approaches

that follow these lines. Nevertheless, although having

the great merit of producing an expression for viscosity

free of free parameters [4], which captures the essence of

the phenomena, (giving a semi-microscopic explanation

to the origin of their anisotropy), both approaches show

disagreements with the experimental data, mainly as the

nematic–crystal phase transition is approached [7, 8].

The origin of such disagreements is yet to be studied [6].

So, a study of the nematic viscosity, which can combine

the richness of the experimental data accumulated in the

liquid crystal literature [18–25], with secure theoretical

propositions, would be useful in the search for a

microscopic theory that could describe the observed

phenomena in the entire range of the nematic phase.

That is the aim of this work.

Here, we will follow the essence of the conforma-

tional transformation approach of Hess et al. [14–17],

which proposed that the viscosity of a nematic material

can be computed by deforming the spherically sym-

metric molecules of an isotropic reference liquid in such

a way that, once deformed, it assumes the ellipsoidal

shape of a nematic molecule. Starting from the

canonical expression for the viscosity of a liquid, two

conform transformations similar to the one proposed by

Hess will be applied to capture three kinds of distinct

microscopic contributions to the macroscopic beha-

viour of these materials: (1) the molecular anisotropic

shape, (2) the strength of the interaction between

neighbouring molecules and (3) the decay time asso-

ciated with the viscous process. A large set of

experimental data on thermotropic liquid crystals will

be compared with our results [18–25], and it will be

shown that once the molecular shape and strength of

the molecular interactions are separated from the global

behaviours of the viscosity data, the resultant curves

describe a closely regular behaviour, indicating that

these parameters are important in distinguishing the

viscosity of different compounds.*Corresponding author. Email: simoes@uel.br
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2. Time correlation approach

The anisotropy observed in viscosity coefficients is a

macroscopic manifestation of the different geometrical

orientations that the microscopic anisotropic liquid

crystal molecules can acquire in a sample where the

shear flow introduces a preferred orientation. The

observation of such behaviour in the viscosity of a

NLC, led to the following definition for the Miesowicz

viscosity coefficients [3]: g1, when the long axis of the

molecules is parallel to the gradient of the velocity; g2,

when the long axis of the molecules is parallel to the

direction of the flow; g3, when the long axis of the

molecules is simultaneously perpendicular to the direc-

tion of the flow and perpendicular to the velocity

gradient (see figure 1).

In order to handle the explicit influence of the

micellar anisotropy on the Miesowicz coefficients, the

standard viscosity expression, given as a time correla-

tion function [26, 27], will be used. According to the

theory of the transport process, the shear viscosity is

given by [26]:

g~
1

kBTV

ð?
0

dtSJxy 0ð ÞJxy tð ÞT ð1Þ

where

Jxy~
XN

a~1

px
ap

y
b

m
z

1

2

XN

a, b~1

rx
abF

y
ab ð2Þ

is the transverse current, kB is the Boltzmann constant,

V is the volume of the sample, px
a is the cartesian

component x of the of the momentum of the particle a,

rx
ab is the cartesian component x of the distance between

the particles a and b, F
y
ab is the cartesian component y of

the force between the particles a and b, and N is the

total number of particles in the sample. In liquids, the

viscosity is dominated by the term rx
abF

y
ab, which takes

care of the transport of momentum through the direct

interaction between the particles. This is the term that

we will use here. The first term, containing px
apy

a, evolves

the direct transport of momentum by the particles

moving from one shear plane to another, being

dominant for gases, but marginal for liquids.

Firstly, it will be assumed that the correlation

between different instants decays exponentially,

SJxy(0) Jxy(t)T ,Jxy(0)2 exp (2t/t), where t is the

correlation decay time [28, 27]. Hence,

g~t
SJxy 0ð Þ2T

kBTV
: ð3Þ

Furthermore, as done by Hess, it is assumed that the

force between the particles results from an interacting

potential Uab, which is invariant by a conformational

transformation that changes it from a sphere to an

ellipsoid having the shape of the nematic micelles (or

molecules). So, we would have

F
y
ab~

d

dy
Uab ð4Þ

and, using this equation to perform the Hess conform

transformation,

rx
ab?lxrx

ab ð5Þ

F
y
ab?

1

ly
F

y

ab: ð6Þ

The term of equation (2) that is relevant for the viscosity

of liquids becomes

1

2

XN

a, b~1

rx
abF

y
ab?

lx

ly

� �
1

2

XN

a, b~1

rx
abF

y

ab ð7Þ

where the bar over rx
ab and F

y

ab is used to indicate that

they have spherical symmetry and lx and ly are,

respectively, the instantaneous projection of the mole-

cular dimensions along the directions~eex and~eey. Finally,

assuming that the statistical average over the dynamical

variables, position and momentum, is independent of

the average over the effective molecular shape, we

would arrive at

g~S
lx

ly

� �2

Tt
SJ

xy
0ð Þ2T

kBTV
: ð8Þ

Consequently, as the different Miesowicz coefficients

are distinguished by different geometry, the values of lx
and l and the decay times will vary accordingly. Using

Figure 1. Geometry used to define each of the Miesowicz
coefficients. The arrows give the direction of the fluid follow,
and the continuous variation of their length represents
variation of the fluid velocity. For each Miesowicz coefficient
the molecular long axis has a different orientation relative to
the direction of the fluid flow. For the coefficient g1, the long
axis of the molecules is parallel to the gradient of the velocity;
for g2, the long axis of the molecules is parallel to the direction
of the flow; for g3, the long axis of the molecules is
perpendicular to the direction of the flow and also perpendi-
cular to the velocity gradient.
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the definitions of the Miesowicz coefficients and the

geometry shown in figure 1 it is found that

g1~S
h

a

� �2

Tt1
SJ

xy
0ð Þ2T

kBTV
ð9Þ

g2~S
a

h

� �2

Tt2
SJ

xy
0ð Þ2T

kBTV
ð10Þ

g3~t3
SJ

xy
0ð Þ2T

kBTV
: ð11Þ

See figure 2, where h is the instantaneous molecular

projection along the director direction and a is the

instantaneous molecular projection on the axis perpen-

dicular to the director direction. In this equation the

term SJ
xy

0ð Þ2T is, by construction, spherically sym-

metric, being, therefore, the same for all Miesowicz

coefficients. Consequently, the orientational averages

[9–13], usually expressed in terms of the order para-

meters S2 and S4, are contained in the averages S(h/a)2T
and S(a/h)2T and in the decay times. So, it follows that

the relations

g1

g3

~S
h

a

� �2

T
t1

t3
,

g2

g3

~S
a

h

� �2

T
t2

t3
ð12Þ

would depend exclusively on the geometry of the

nematic domains and in the decay times. In order to

obtain an expression where the geometrical averages,

S(h/a)2T and S(a/h)2T, could be eliminated, let us assume

that the rule,

S
h

a

� �2

TS
a

h

� �2

T&S
h

a

� �2
a

h

� �2

T~1 ð13Þ

can be taken as an approximation. In general the

product of averages is not exactly the average of the

product. Nevertheless, such an approximation should

be useful in the experimental investigation of the data

corresponding to the expressions that appear in

equation (12); in their product the terms having

geometrical meaning become eliminated. Under such

an approximation we have,

g2
3

g1g2

~
t2

3

t1t2
: ð14Þ

In this equation any explicit contribution of the

molecular dimensions to the viscosity has been elimi-

nated, and a correlation between the Miesowicz

coefficients and the respective decay times is all that

remains. It will be shown that with a redefinition of the

temperature scale it is possible to arrange experimental

data in such a way that they all seem to lie on the same

curve, suggesting the existence of a common general

law.

3. Corresponding states and the nematic temperature

scale

In the proceeding section, the contribution of the

molecular size proportions to the liquid crystal viscosity

was factorized. Nevertheless, there is another important

physical aspect distinguishing viscosities of different

compounds: the difference in the strength of the

interaction between their constituent molecules. One

consequence of such difference is that the temperatures

at which the same kind of phase transition is observed

in different materials depends on the material. So, if for

all compounds the same and unique temperature could

be attributed this critical point, at least around them

part of the effects attributed to the diversity found in the

strength of the interaction could be made uniform.

Usually, this procedure is implemented with a rescaling

in the temperature. Nevertheless, for some liquid

crystals not just one critical point is found, but two:

the nematic–isotropic and the nematic–crystal phase

transition points. So, for these compounds we can go

beyond a simple shift in the temperature value; the

existences of two critical points permits the collective

establishment of two fixed temperatures and, as a

consequence, the definition of a new temperature scale,

the nematic scale [7, 8]. Thus the effect of the

homogenization of the interaction between molecules

would not be restricted to the neighbourhood of a

Figure 2. Ellipsoid exhibiting the geometry that leads to the
results stated in equation (11). The parameter h measures the
instantaneous projection of the molecular dimensions along
the director direction; a is the instantaneous molecular
projection on the direction perpendicular to the director that
is contained in the plane defined by the velocity gradient and
the velocity of the fluid.
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critical point, but it would be extended to the whole

range of the nematic phase. That is, for such

compounds a nematic state could be defined in terms

of this temperature scale and it will not describe the

physical state of a particular compound but, more than

that, collectively through a correspondence of states it

would map the physical states of all them [30–32].

In order to compare the above results with experi-

mental data, LC viscosity data exhibiting these two

fixed points have been collected from the LC literature.

The list of the compounds utilized in this analysis

is: PAA (p-azoxyanisole); MBBA (p-methoxybenzyli-

dene-p-n-butylaniline); N4 (eutectic mixture of the

4-methoxy-4-n-butylazoxybenzenes); EM (eutectic mix-

ture of 49-n-pentylphenyl 4-methoxybenzoate and

4-n-pentylphenyl 4-n-hexyloxybenzoate); 5CB (4-n-pen-

tyl-4-cyanobiphenyl); HBAB (p-n-hexyloxybenzylidene-

p-aminobenzonitrile); MIST (1:1:1-molar mixture of

HBAB with p-n-butoxybenzylidene-p-aminobenzoni-

trile and p-n-octanoyloxybenzylidene-p9-aminobenzoni-

trile).

The researchers who performed the measurements

used here are quoted in [18–25]. For all these

compounds the nematic phases exist in different

temperature intervals that have been rescaled to a

new, and unique, temperature scale where to the

crystal–nematic phase transition points given the

temperature T50, while for the nematic–isotropic phase

transition point the temperature T51 was assigned.

Then, using these experimental data, the relations given

in equations (12) and (14) were computed. The ratios g3/

g1 and g3/g2 are displayed in a unique graphic form, see

figure 3; their product is shown in figure 4. The

distribution of these points is in complete accord with

the reasoning developed previously [7, 8]. The sets of

points corresponding to g3/g1 and g3/g2 are not

randomly distributed. The values of g3/g1 fluctuate

around g3/g1<0.4, being observed to increase slightly

with rise of temperature. The values of g3/g2 fluctuate

around 1.7, presenting a small decrease with rise of

temperature. Furthermore, both sets of experimental

data points seem to approach the value 1 as the

temperature approaches the N–I transition. Even with

significant fluctuations, it is clear that these experi-

mental data points occupy two distinct regions. The

regularity and agreement observed in their distribution

seems to be in accord with the idea that they describe

corresponding states; after a simple rescaling in the

temperature, experimental data for different com-

pounds, measured at different fimes in different studies,

are clearly distributed along two distinct regions,

suggesting that they could coalesce along two single

Figure 3. Experimental data points from different sources have been collected and used to furnish the ratios between the
Miesowicz coefficients, g3/g2 and g3/g1 [18–25]. The temperature scale is the nematic temperature scale, defined in such a way that,
for all compounds, the nematic–crystal transition point is associated with a reduced temperature T50 [7, 8]. Additionally, the
nematic–isotropic phase transition is associated with the reduced temperature T51. The g3/g2 data appear in the upper half of the
plot, showing a regularity that suggests a corresponding states curve. The data for g3/g1 appear in the lower half of the plot and also
suggest a corresponding states curve.
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curves. Furthermore, the existence of these two distinct

and characteristic lines of coalescence of the experi-

mental data seems to be in agreement with the content

of equation (12), revealing that indeed the geometric

proportions and quotient between the decay times of the

molecules are approximately the same for all com-

pounds studied.

In figure 4, the nematic scale is again used to display
the experimental data according to the relationship of

equation (14). It is easy to see that the resulting curve

presents the same regularity and consistency found for

equation (12), also suggesting that a common law

connects these data. Even with a non-negligible disper-

sion, the coherence of these data is sufficient to suggest

the existence of a universality described by a curve of

corresponding states, which according to our preceding
scaling analysis would be a result of the approximate

coincidence observed in the ratio, t2
3

�
t1t2ð Þ, of the

decay times.

4. Final remarks and conclusion

Through the application of two rescalings on the

correlation function that describes the viscosity of a

liquid, the contribution of some parameters to the

distinction between the viscosities of different thermo-

tropic nematic liquid crystals has been determined. We

have used a set of experimental data to test the

hypotheses that sustain our study. It has been found

that three parameters make relevant contributions to

the nematic viscosity: (1) the ellipsoidal molecular

shape, (2) the range of the molecular interaction and

(3) the decay time associated with the viscosity process.

When these parameters are analysed the ratio between

the Miesowicz coefficients assumes the form of regular

curves, showing apparently common behaviour for all

the materials studied. So, by suggesting that the ratios

given by equations (2) and (14) would be the same for all

thermotropic compounds, these laws provide a criterion

for seeking an efficient viscosity theory; when the

nematic temperature scale is used, these three relation-

ships provide a criterion to be satisfied by the results of

any theory accounting for the Miesowicz coefficients.

Furthermore, if these relations are verified, or even if

their precision is determined, they would render the

determination of the Miesowicz coefficients trivial; if

the nematic–crystal and the nematic–isotropic tempera-

tures of a given thermotropic compound are known, the

nematic temperature scale could be constructed, and the

determination of one of the Miesowicz coefficients at a

unique point would be enough to determine all of them

over the range of the nematic phase.
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Figure 4. Distribution of the quantity g1g2

�
g2

3, as a function of the reduced temperature (as defined in the text) for the
experimental data exhibited in figure 3. According to the calculation developed in this paper, this quantity would represent the ratio
t1t2

�
t2

3, between the time relaxation rate and viscosity of each Miesowicz coefficient, equation (14). The distribution these
experimental data suggest that a different decay time is associated with each Miesowicz coefficient, but, nevertheless, a common law
connects them.
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